# **Complexity Review**

## **Decision Problems**

- **Decision problem**: assignment of inputs to Yes (1) or No (0)
- Inputs are either **No instances** or **Yes instances** (i.e. satisfying instances)

| Problem                  | Decision                                                                                      |
|--------------------------|-----------------------------------------------------------------------------------------------|
| <i>s-t</i> Shortest Path | Does a given <i>G</i> contain a path from <i>s</i> to <i>t</i> with weight at most <i>d</i> ? |
| Negative Cycle           | Does a given $G$ contain a negative weight cycle?                                             |
| Longest Path             | Does a given <i>G</i> contain a <b>simple</b> path with weight at least <i>d</i> ?            |
| Subset Sum               | Does a given set of integers <i>A</i> contain a subset with sum <i>S</i> ?                    |
| Tetris                   | Can you survive a given sequence of pieces?                                                   |
| Chess                    | Can a player force a win from a given board?                                                  |
| Halting problem          | Does a given computer program terminate for a given input?                                    |

- Algorithm/Program: constant length code (working on a word-RAM with Ω(log n)bit words) to solve a problem, i.e., it produces correct output for every input and the length of the code is independent of the instance size
- Problem is **decidable** if there exists a program to solve the problem in finite time

# Decidability

- Program is finite constant string of bits, problem is function  $p : \mathbb{N} \to \{0, 1\}$ , i.e., infinite string of bits
- (# of programs  $|\mathbb{N}|$ , countably infinite)  $\ll$  (# of problems  $|\mathbb{R}|$ , uncountably infinite)
- (Proof by Cantor's diagonal argument, probably covered in 6.042)
- Proves that most decision problems not solvable by any program (undecidable)
- e.g. the Halting problem is undecidable (many awesome proofs in 6.045)
- Fortunately most problems we think of are algorithmic in structure and are decidable

'R' comes from recursive languages

## **Decidable Decision Problems**

- R problems decidable in finite time
- problems decidable in exponential time  $2^{n^{{\cal O}(1)}}$ EXP
  - most problems we think of are here **P** problems decidable in polynomial time  $n^{O(1)}$ efficient algorithms, the focus of this class
  - These sets are distinct, i.e.  $\mathbf{P} \subseteq \mathbf{EXP} \subseteq \mathbf{R}$  (via time hierarchy theorems, see 6.045)

### Nondeterministic Polynomial Time (NP)

- **P** is the set of decision problems for which there is an algorithm A such that for every instance I of size n, A on I runs in poly(n) time and solves I correctly
- NP is the set of decision problems for which there is an algorithm V, a "verifier", that takes as input an instance I of the problem, and a "certificate" bit string of length polynomial in the size of *I*, so that:
  - V always runs in time polynomial in the size of I,
  - if I is a YES-instance, then there is some certificate c so that V on input (I, c)returns YES, and
  - if I is a NO-instance, then no matter what c is given to V together with I, V will always output NO on (I, c).
- You can think of the certificate as a proof that *I* is a YES-instance. If *I* is actually a NO-instance then no proof should work.

| Problem                  | Certificate                | Verifier                                                                 |
|--------------------------|----------------------------|--------------------------------------------------------------------------|
| <i>s-t</i> Shortest Path | A path $P$ from $s$ to $t$ | Adds the weights on <i>P</i> and checks if $\leq d$                      |
| Negative Cycle           | A cycle C                  | Adds the weights on $C$ and checks if $< 0$                              |
| Longest Path             | A path P                   | Checks if <i>P</i> is a <b>simple</b> path with weight at least <i>d</i> |
| Subset Sum               | A set of items $A'$        | Checks if $A' \in A$ has sum $S$                                         |
| Tetris                   | Sequence of moves          | Checks that the moves allow survival                                     |

- $\mathbf{P} \subset \mathbf{NP}$ : the verifier V just solves the instance ignoring any certificate
- **NP**  $\subset$  **EXP**: try all possible certificates! At most  $2^{n^{O(1)}}$  of them, run verifier V on all of them
- **Open:** Does **P** = **NP**? **NP** = **EXP**?
- Most people think  $P \subseteq NP$  ( $\subseteq EXP$ ), i.e., generating solutions harder than checking
- If you prove either way, people will give you lots of money. (\$1M Millennium Prize)
- Why do we care? If can show a problem is hardest problem in **NP**, then problem cannot be solved in polynomial time if  $\mathbf{P} \neq \mathbf{NP}$
- How do we relate difficulty of problems? Reductions!

#### Reductions

- Suppose you want to solve problem A
- One way to solve is to convert A into a problem B you know how to solve
- Solve using an algorithm for *B* and use it to compute solution to *A*
- This is called a **reduction** from problem A to problem  $B (A \rightarrow B)$
- Because *B* can be used to solve *A*, *B* is at least as hard  $(A \le B)$
- General algorithmic strategy: reduce to a problem you know how to solve

| A                              | Conversion         | B                              |
|--------------------------------|--------------------|--------------------------------|
| Unweighted Shortest Path       | Give equal weights | Weighted Shortest Path         |
| Product Weighted Shortest Path | Logarithms         | Sum Weighted Shortest Path     |
| Sum Weighted Shortest Path     | Logarithms         | Product Weighted Shortest Path |

- Problem *A* is **NP-Hard** if every problem in **NP** is polynomially reducible to *A*
- i.e. A is at least as hard as (can be used to solve) every problem in NP (X ≤ A for X ∈ NP)
- **NP-Complete** = **NP**  $\cap$  **NP-Hard**
- All NP-Complete problems are equivalent, i.e. reducible to each other
- First **NP-Complete** problem? Every decision problem reducible to satisfying a logical circuit, a problem called "Circuit SAT".
- Longest Path, Tetris are NP-Complete, Chess is EXP-Complete



#### **Knapsack is NP-Hard**

- Reduce known NP-Hard Problem to Knapsack: Partition known to be NP-Hard
  - Input: List of n numbers  $a_i$
  - Output: Does there exist a partition into two sets with equal sum?
- Reduction:  $s_i = v_i = a_i$ ,  $s = \frac{1}{2} \sum a_i$

- Knapsack at least as hard as Partition, so since Partition is **NP-Hard**, so is Knapsack
- Knapsack in NP, so also NP-Complete