
Foundations of Computer Security September 8, 2021
Massachusetts Institute of Technology 6.S060 Fall 2021
Henry Corrigan-Gibbs, Srini Devadas, Yael Kalai, Nickolai Zeldovich Handout 1

Complexity Review

Decision Problems

• Decision problem: assignment of inputs to Yes (1) or No (0)

• Inputs are either No instances or Yes instances (i.e. satisfying instances)

Problem Decision
s-t Shortest Path Does a given G contain a path from s to t with weight at most d?

Negative Cycle Does a given G contain a negative weight cycle?
Longest Path Does a given G contain a simple path with weight at least d?

Subset Sum Does a given set of integers A contain a subset with sum S?
Tetris Can you survive a given sequence of pieces?
Chess Can a player force a win from a given board?

Halting problem Does a given computer program terminate for a given input?

• Algorithm/Program: constant length code (working on a word-RAM with Ω(log n)-
bit words) to solve a problem, i.e., it produces correct output for every input and
the length of the code is independent of the instance size

• Problem is decidable if there exists a program to solve the problem in finite time

Decidability

• Program is finite constant string of bits, problem is function p : N → {0, 1}, i.e.,
infinite string of bits

• (# of programs |N|, countably infinite)� (# of problems |R|, uncountably infinite)

• (Proof by Cantor’s diagonal argument, probably covered in 6.042)

• Proves that most decision problems not solvable by any program (undecidable)

• e.g. the Halting problem is undecidable (many awesome proofs in 6.045)

• Fortunately most problems we think of are algorithmic in structure and are decid-
able

2 Handout 1: Complexity Review

Decidable Decision Problems
R problems decidable in finite time ‘R’ comes from recursive languages

EXP problems decidable in exponential time 2nO(1) most problems we think of are here
P problems decidable in polynomial time nO(1) efficient algorithms, the focus of this class

• These sets are distinct, i.e. P (EXP (R (via time hierarchy theorems, see 6.045)

Nondeterministic Polynomial Time (NP)

• P is the set of decision problems for which there is an algorithm A such that for
every instance I of size n, A on I runs in poly(n) time and solves I correctly

• NP is the set of decision problems for which there is an algorithm V , a “verifier”,
that takes as input an instance I of the problem, and a “certificate” bit string of
length polynomial in the size of I , so that:

– V always runs in time polynomial in the size of I ,
– if I is a YES-instance, then there is some certificate c so that V on input (I, c)

returns YES, and
– if I is a NO-instance, then no matter what c is given to V together with I , V

will always output NO on (I, c).

• You can think of the certificate as a proof that I is a YES-instance. If I is actually a
NO-instance then no proof should work.

Problem Certificate Verifier
s-t Shortest Path A path P from s to t Adds the weights on P and checks if ≤ d

Negative Cycle A cycle C Adds the weights on C and checks if < 0
Longest Path A path P Checks if P is a simple path with weight at least d

Subset Sum A set of items A′ Checks if A′ ∈ A has sum S
Tetris Sequence of moves Checks that the moves allow survival

• P ⊂ NP: the verifier V just solves the instance ignoring any certificate

• NP ⊂ EXP: try all possible certificates! At most 2nO(1) of them, run verifier V on all
of them

• Open: Does P = NP? NP = EXP?

• Most people think P (NP ((EXP), i.e., generating solutions harder than checking

• If you prove either way, people will give you lots of money. ($1M Millennium Prize)

• Why do we care? If can show a problem is hardest problem in NP,
then problem cannot be solved in polynomial time if P 6= NP

• How do we relate difficulty of problems? Reductions!

Handout 1: Complexity Review 3

Reductions

• Suppose you want to solve problem A

• One way to solve is to convert A into a problem B you know how to solve

• Solve using an algorithm for B and use it to compute solution to A

• This is called a reduction from problem A to problem B (A→ B)

• Because B can be used to solve A, B is at least as hard (A ≤ B)

• General algorithmic strategy: reduce to a problem you know how to solve

A Conversion B
Unweighted Shortest Path Give equal weights Weighted Shortest Path
Product Weighted Shortest Path Logarithms Sum Weighted Shortest Path
Sum Weighted Shortest Path Logarithms Product Weighted Shortest Path

• Problem A is NP-Hard if every problem in NP is polynomially reducible to A

• i.e. A is at least as hard as (can be used to solve) every problem in NP (X ≤ A for
X ∈ NP)

• NP-Complete = NP ∩ NP-Hard

• All NP-Complete problems are equivalent, i.e. reducible to each other

• First NP-Complete problem? Every decision problem reducible to satisfying a logi-
cal circuit, a problem called “Circuit SAT”.

• Longest Path, Tetris are NP-Complete, Chess is EXP-Complete

EXP-Complete Problem Difficulty
(informal)

P NP EXP R

NP-Hard EXP-Hard

NP-Complete

Knapsack is NP-Hard

• Reduce known NP-Hard Problem to Knapsack: Partition known to be NP-Hard

– Input: List of n numbers ai
– Output: Does there exist a partition into two sets with equal sum?

• Reduction: si = vi = ai, s = 1
2

∑
ai

4 Handout 1: Complexity Review

• Knapsack at least as hard as Partition, so since Partition is NP-Hard, so is Knapsack

• Knapsack in NP, so also NP-Complete

