Foundations of Computer Security September 8, 2021
Massachusetts Institute of Technology 6.5060 Fall 2021
Henry Corrigan-Gibbs, Srini Devadas, Yael Kalai, Nickolai Zeldovich Handout 1

Complexity Review

Decision Problems

* Decision problem: assignment of inputs to Yes (1) or No (0)

¢ Inputs are either No instances or Yes instances (i.e. satisfying instances)

Problem | Decision

s-t Shortest Path | Does a given G contain a path from s to ¢ with weight at most d?
Negative Cycle | Does a given G contain a negative weight cycle?
Longest Path | Does a given G contain a simple path with weight at least d?
Subset Sum | Does a given set of integers A contain a subset with sum S?
Tetris | Can you survive a given sequence of pieces?
Chess | Can a player force a win from a given board?
Halting problem | Does a given computer program terminate for a given input?

e Algorithm/Program: constant length code (working on a word-RAM with Q(logn)-
bit words) to solve a problem, i.e., it produces correct output for every input and
the length of the code is independent of the instance size

* Problem is decidable if there exists a program to solve the problem in finite time

Decidability

* Program is finite constant string of bits, problem is function p : N — {0,1}, i.e,
infinite string of bits

(# of programs |N|, countably infinite) < (# of problems |R|, uncountably infinite)

(Proof by Cantor’s diagonal argument, probably covered in 6.042)

Proves that most decision problems not solvable by any program (undecidable)

e.g. the Halting problem is undecidable (many awesome proofs in 6.045)

Fortunately most problems we think of are algorithmic in structure and are decid-
able

2 Handout 1: Complexity Review

Decidable Decision Problems

R | problems decidable in finite time ‘R’ comes from recursive languages
EXP | problems decidable in exponential time 2"°"’ most problems we think of are here
P | problems decidable in polynomial time n®Y) efficient algorithms, the focus of this class

* These sets are distinct, i.e. P C EXP C R (via time hierarchy theorems, see 6.045)

Nondeterministic Polynomial Time (NP)

¢ P is the set of decision problems for which there is an algorithm A such that for
every instance I of size n, A on I runs in poly(n) time and solves I correctly

* NP is the set of decision problems for which there is an algorithm V, a “verifier”,
that takes as input an instance I of the problem, and a “certificate” bit string of
length polynomial in the size of I, so that:

- V always runs in time polynomial in the size of I,

— if I is a YES-instance, then there is some certificate ¢ so that V' on input (/, ¢)
returns YES, and

— if I is a NO-instance, then no matter what c is given to V together with I, V'
will always output NO on (I, ¢).

* You can think of the certificate as a proof that I is a YES-instance. If I is actually a
NO-instance then no proof should work.

Problem | Certificate Verifier
s-t Shortest Path | A path P from s to ¢ | Adds the weights on P and checks if < d
Negative Cycle | A cycle C Adds the weights on C' and checks if < 0
Longest Path | A path P Checks if P is a simple path with weight at least d
Subset Sum | A set of items A’ Checks if A’ € Ahassum S
Tetris | Sequence of moves | Checks that the moves allow survival

* P C NP: the verifier V just solves the instance ignoring any certificate

e NP C EXP: try all possible certificates! At most 2"°"” of them, run verifier V on all
of them

* Open: Does P = NP? NP = EXP?
* Most people think P C NP (C EXP), i.e., generating solutions harder than checking
¢ If you prove either way, people will give you lots of money. ($1M Millennium Prize)

¢ Why do we care? If can show a problem is hardest problem in NP,
then problem cannot be solved in polynomial time if P # NP

* How do we relate difficulty of problems? Reductions!

Handout 1: Complexity Review 3

Reductions

Suppose you want to solve problem A

One way to solve is to convert A into a problem B you know how to solve
Solve using an algorithm for 5 and use it to compute solution to A

This is called a reduction from problem A to problem B (A — B)

Because B can be used to solve A, B is at least as hard (A < B)

General algorithmic strategy: reduce to a problem you know how to solve

A ‘ Conversion ‘ B

Unweighted Shortest Path Give equal weights | Weighted Shortest Path
Product Weighted Shortest Path | Logarithms Sum Weighted Shortest Path
Sum Weighted Shortest Path Logarithms Product Weighted Shortest Path

Problem A is NP-Hard if every problem in NP is polynomially reducible to A

i.e. Ais at least as hard as (can be used to solve) every problem in NP (X < A for
X € NP)

NP-Complete = NP 1 NP-Hard
All NP-Complete problems are equivalent, i.e. reducible to each other

First NP-Complete problem? Every decision problem reducible to satisfying a logi-
cal circuit, a problem called “Circuit SAT”.

Longest Path, Tetris are NP-Complete, Chess is EXP-Complete

NP-Hard EXP-Hard
— —

B NP-Complete N '/EXP'C”I“M(‘“\ N Problem Difficulty
- J J o (informal)
- <
P NP EXP R

Knapsack is NP-Hard

Reduce known NP-Hard Problem to Knapsack: Partition known to be NP-Hard

— Input: List of n numbers a;

— Output: Does there exist a partition into two sets with equal sum?

Reduction: s;, = v; = a4, s = % doa;

Handout 1: Complexity Review

¢ Knapsack at least as hard as Partition, so since Partition is NP-Hard, so is Knapsack

¢ Knapsack in NP, so also NP-Complete

