
Lecture 17: Hardware Trust

When we interact with computers, how do we know anything is what it says it is? We would
like to have systems that can provide these functionalities:

Gatekeeping: Restricting the software that can run on a processor/device/chip. This is the
secure boot from Lecture 16. Example: Intel SGX microcode patches, industrial
microcontrollers.

Certified Execution: Processor/device/chip guarantees that particular software was run
correctly and to completion. This is the measured boot from Lecture 16. Examples are Google
OpenTitan, Intel SGX attested execution.

Intellectual Property Protection: Software only runs on a particular processor/device/chip.
Example: Game controllers.

We will now look at a specific scenario of certified execution/measured boot and detail how we
can build a system that can authenticate itself to a user.

Goal: Guarantee integrity for loading a boot image in an untrusted setting, given pre-existing

trust in HW, manufacturer, desired boot image.

Threat Model:

Unconditional trust:

• Manufacturer’s keys, trusted HW

• Desired boot image (key privacy)
• … and you! (the first party)

Adversary: boot a different, malicious binary, interact with it
… but not tamper with the hardware
… or extract its secret key
… or deny service

Steps in Measured Boot

1. Manufacturer M securely generates PKM/SKM, publishes PKM and stores SKM.
Manufacturer is a Certification Authority.

2. M builds trustworthy device D with keys. D has some properties:
a. Trustworthy keys, PKD/SKD, SKD is secret
b. No back doors
c. A trusted ROM (Read Only Memory provides integrity not privacy)
d. First instruction integrity

D exposes SKD for use via a special interface, which is hidden from normal software.

3. M certifies PKD, i.e., Sign(SKM, PKD) = CertD. Proves (under trust assumptions) that a
device D with access to SKD is manufactured by M.

4. D executes from a root of trust at reset. D must guarantee first instruction integrity

a. Erase (or re-key) memory
… secrets from previous boot
(erasing GBs of DRAM is very slow!)

b. Load an untrusted binary S
… assuming it has certain structure
(size, reserved space for keys, etc.)

The processor is wired to execute at address 0x1000 at reset, which can correspond to a
trusted ROM (a read-only memory and a part of the TCB). Via the code in this trusted
ROM, the processor initializes memory with a software image, sets registers to known
values, and transfers control to program that we wish to load, namely, S, in system
memory. The measured-boot protocol extends the boot ROM to perform additional
operations described in subsequent steps 5-8, to set up the following memory layout
(pink is untrusted because it comes from the outside, blue is trusted because it is
computed within the chip):

After reset, the machine executes instructions at address 0x1000, here referred to as
the reset vector. Before transferring control to the loaded image (S), the reset vector
cleans up any private state left after the execution of the measured boot.

5. The bootloader measures the initial state of the system software to be loaded. In order
to authenticate S, the protocol measures it by computing a hash of a range of addresses
in system memory where S is declared to reside. The software image to be loaded via a
bootloader must correctly specify the size of S (len_s Bytes), S itself, and correctly place
these at their appropriate addresses.

6. The bootloader endows S with unique cryptographic keys rooted in its measurement.
Derive a cryptographic key pair (PKS, SKS) for S in such a way that loading another S or
performing the same bootloading procedure on another D would yield different keys. In
order to achieve this property, we use a key derivation function (KDF) to derive the keys
from both SKD and the measurement of S, as shown below.

Note that executing this code will leave side effects in the machine (buffers, stack
frames, and micro-architectural effects, depending on the threat model), and we must
take care to clean up before delegating control to untrusted software.

7. The bootloader certifies the keys of the software to be loaded. The unique keys created

for S are meaningless unless they are cryptographically linked to the measurement
of S and D, which is in turn linked to the trusted M via a certificate. Without this, it
cannot be shown that the keys have anything to do with S executing in a trusted
environment, and therefore any proof of ownership of SKS is meaningless. In order to

certify PKS, we sign the message (PKS, Hash(S)) with SKD, creating a certificate CertS that
can convince a third party that PKs corresponds to a specific post-boot
environment S loaded by a specific trusted processor D, which is in turn manufactured
by M.

8. Now we are ready to clean up and boot! The measured-boot implementation must take
care to sanitize the stack before delegating control to the binary it has loaded. the post-
boot environment is expected to safeguard its unique key SKS and this can be
challenging.

9. The post-boot environment has two certificates: (CertD, CertS). Attestation of this

environment includes a nonce in order to make sure a copy of an honest attestation
cannot be reused by a malicious system after the fact. The trusted first party selects
a nonce and has the well-known and trusted PKM. The system S creates an attestation
data structure with the nonce, signs it with SKS, and sends the entire attestation to the
first party. The first party verifies the attestation by verifying CertD to check
if M endorsed D with public key PKD. They also verify CertS to check whether
device D endorsed S with hash HashS, which matches a trusted hash, and public key PKS.
Finally, they verify the signature over the attestation data structure, showing the prover
had access to SKS, and used the correct nonce. Key agreement can follow a successful
attestation to obtain a secure channel between the trusted first party and the prover.

Gatekeeping: restricting which software the system may boot

In a setting where the space of software the system is allowed to run should be restricted
(systems that expect correct software to prevent injury, for example), the measured-boot
protocol presented above is insufficient. Indeed, any software will boot, with distinct hashes,
keys and certificates. In a high-assurance setting where the system is able to perform trusted
tasks without remote attestation, the software must be attested to locally, for example by
aborting the bootloader if the software is not trustworthy.

The simplest and least flexible implementation of a gatekeeping secure bootloader extends the
measured boot protocol to panic (stop with a terminal error) if HashS does not match a hard-
coded constant. This only allows one specific S to be loaded at boot. Essentially, manufacturer
has a whitelist of allowed software.

Clearly, this is not ideal: the hardware likely resists alterations, meaning a system with a hard-
coded expected measurement cannot be amended by the manufacturer to address errors,
changing requirements, or to increase security parameters. Instead, the hardware can hard-
code the public key corresponding to a signing authority and use it to require a signed
certificate for the boot image. Finally, the manufacturer can delay and delegate the white-
listing of allowed software to trusted vendors by requiring HashS to be certified either by M or

by a party endorsed by M. This, while still very simple, approaches the functionality of a typical
bootloader for a commercial computer system.

Reducing trust in the manufacturer

Until we figure out a way to have a piece of silicon cryptographically measure itself, we don’t
have much hope to authenticate hardware without some blind trust in the manufacturer and
their supply chain. Given the staggering complexity of modern hardware design and
manufacturing, we must trust the integrity of the design and manufacturing process. If a
manufacturer says “this is the chip, and here are the security invariants it upholds”, we pretty
much have to take their word for it and implicitly trust all the third parties trusted by the
manufacturer.

We can, however, expand the space of dishonest behaviors we can tolerate by the
manufacturer without compromising the security guarantees of system. One such opportunity
is reducing trust in the manufacturer’s handling of device keys. Because a manufacturer is
expected to endow each system they build with a unique cryptographic key pair, they may
choose to go further and retain a copy of the system’s private key. In order for the system’s
security invariants to remain viable, the manufacturer must be trusted not to reveal this key,
including through malice, negligence, subpoena, social engineering, etc. It is therefore clear
that the manufacturer may possess sensitive information that forever remains a critical part of
the system. Consider an “honest but curious manufacturer” that follows the prescribed protocol
and correctly manufactures and provisions the trusted computer system, but is expected to be
“curious” and attempt to learn secret information. The manufacturer is not required to
know SKD in order to manufacture the device — only PKD to endorse it. A Physical Unclonable
Function (PUF) can measure manufacturing variation at boot to seed a repeatable but unique
device key pair {SKD, PKD} without storing the keys in any non-volatile memory, and outputs
PKD for the manufacturer to endorse. If correctly manufactured, M would have no special
access to SKD, reducing secret information outside the processor package to the manufacturer’s
root key SKM alone.

Physical Unclonable Function (PUF)

Goal: SKD that is hard to extract via a physical attack, and SKD that is unknown to M.

Physical Unclonable Functions (PUFs)

• PUFs are a silicon biometric

• Because of random process variations, no two
Integrated Circuits even with the same layouts are
identical

• Delay-Based Silicon PUF concept (2002)
– Generate keys from unique delay features of chips

Combinational
Circuit

Challenge
n-bits

Response
m-bits

Ring Oscillator PUF

Counter(

Counter(

Subtract(≥0?("↓1 
%↓1 

Counter(

Counter(

Subtract(≥0?(

Counter(

Counter(

Subtract(≥0?(

. . .

. . .

"↓2 
%↓2 

"↓& 
%↓& 

' Ring Oscillator Pairs Response bit 0 or 1

e1

e2

>

>

Problem: Response bits can flip 0 ⇄ 1 with
temperature variation, environmental noise if
compared counter values are close to each other

Fuzzy Extractors
Produce Stable Keys

• Public Helper Data B leaks information about e, s
• Information-theoretically speaking, number of

remaining secret bits = |s| - |B|
• Problem: error rate ↑ ⇒ |B| ↑ ⇒ secret bits ↓

Biometric source
(re)generates m bits

Gen

Rep
Helper Data B

e

e’

s

s

Learning Parity with Noise (LPN)

b1 = a1 . s + e1

b2 = a2 . s + e2

…
bm = am . s + em

s secret, ai, bi public, ei hidden independent noise
ai, s are n-bit vectors, bi, ei are bits

Hard to discover s given ai and bi
for any m > n for any non-zero noise level

All
operations

mod 2

Gen Step

b1 = a1 . s + e1

b2 = a2 . s + e2

…
bm = am . s + em

Choose randomly
and is secret

PUF generates
these values

Choose randomly.
Same and public
for all instances

Computed
and is public
helper data

Gen

Helper Data B

e s

Rep Step

b1 = a1 . s + e’1

b2 = a2 . s + e’2

…
bm = am . s + e’m

unknown

PUF regenerates
these values

known

known

Rep
Helper Data B

e’ s

Rep Step

b1 = a1 . s + e’1

b2 = a2 . s + e’2

…
bm = am . s + e’m

unknown

PUF regenerates
these values

known

known

• Problem: e’i values not the same as ei values
• LPN is hard even for small amount of noise

Ring Oscillator PUF

Counter(

Counter(

Subtract(≥0?("↓1 
%↓1 

Counter(

Counter(

Subtract(≥0?(

Counter(

Counter(

Subtract(≥0?(

. . .

. . .

"↓2 
%↓2 

"↓& 
%↓& 

' Ring Oscillator Pairs Response bit 0 or 1

Confidence information: stability of the bit

=

=

e1

e2

c1

c2

>

>

Confidence Information

b1 = a1 . s + e’1

…
bm = am . s + e’m

Need only n out of m e’i values to be correct to
solve for s
Can use |ci|confidence information associated
with each e’i value to find n correct values!
(|| denotes absolute value of counter)

Key Extraction
b1 = a1 . s + e’1

b5 = a5 . s + e’5

…
bm-1 = am-1 . s + e’m-1

Set m to be Kn, and choose the most stable n bits
out of the m using confidence information ci

Obtain s through Gaussian elimination
K grows with error rate but doesn’t affect security!

Adversary doesn’t know ei/e’i/ci – faces LPN

