6.S060 Lecture 24

Introduction to Differential Privacy

Outline

- Motivation
- Part I:
 - Differential Privacy (DP) Basics
 - DP pros and cons, deployment, challenges
- Part II:
 - DP for Statistics

Material from Harvard class: CS208: Applied Privacy for Data Science Course Overview, by James Honaker & Salil Vadhan.

Material from NIPS 2017 Tutorial by K. Chaudhuri and A. Sarwate.

Motivation

Data Privacy: The Problem

- Given a dataset with sensitive information, such as:
 - Census data
 - Health records
 - Social network activity
 - Telecommunications data
- How can we:
 - enable desirable uses of the data
 - while protecting the privacy of the data subjects?

- Informing policy
- Identifying subjects for drug trial
- Searching for terrorists
- Market analysis

Approach 1: Encrypt the Data

Name	Sex	Blood		HIV?	Name	Sex	Blood	••••	HIV?
Chen	F	В		Y	100101	001001	110101	•••	110111
Jones	Μ	А		Ν	101010	111010	111111	••••	001001
Smith	Μ	0		Ν	001010	100100	011001	••••	110101
Ross	Μ	0		Y	001110	010010	110101	•••	100001
Lu	F	А		Ν	110101	000000	111001	•••	010010
Shah	М	В	•••	Y	111110	110010	000101	•••	110101

Problems: How to search over data or compute statistics? Who has the encryption key?

Approach 2: Anonymize the Data

λ /				
Name	Sex	Blood		HIV?
Chen	F	В	•••	Y
Jones	Μ	А		Ν
Smith	Μ	0	•••	Ν
Ross	Μ	0	•••	Y
Lu	F	А		Ν
Shah	Μ	В		Y
/ \				

Problems?

Reidentification via Linkage

Uniquely identify > 60% of the US population [Sweeney `00, Golle `06]

All it takes is a knowledge of a small number of attributes to identify/name the person!

Netflix Challenge Re-Identification [Narayanan-Shmatikov `08]

Public, incomplete

Identified NetFlix Data

Alice Bob Charlie Danielle Erica Frank

How many movies required on average to uniquely identify a user?

Image credit: Arvind Narayanan

Narayanan-Shmatikov Set-Up

- Dataset: x = set of records (e.g., Netflix ratings)
- Adversary's inputs:

-x' = subset of records from x, distorted slightly

- $-aux = auxiliary information about a record <math>r \in D$ (e.g., a particular identifiable user's IMDB ratings)
- Adversary's goal: output either

 $-r' \in x'$ = record that is "close" to r, or

 $-\perp$ = failed to find a match

Narayanan-Shmatikov Results

- For the \$1m Netflix Challenge, a dataset of 5,00,000 subscribers' ratings (less than 1/10 of all subscribers) was released (total of 100m ratings over 6 years).
- Out of 50 sampled IMDB users, two standouts were found, with eccentricities of 28 and 15.
- Reveals all movies watched from only those publicly rated on IMDB.
- Class action lawsuit, cancelling of Netflix Challenge II.

Message: Any attribute can be a "quasi-identifier"

Approach 3: Mediate Access

Name	Sex	Blood	•••	HIV?		
Chen	F	В		Y		
Jones	Μ	А		Ν		$\xrightarrow{a_1}$
Smith	М	0		Ν	→ C	
Ross	М	0	•••	Y		
Lu	F	А		Ν		
Shah	М	В		Y	trusted	data ana
					"curator"	

Problems: Curator sees all the data. What queries are allowed? How much do they leak?

Part I

 Requirement: effect of each individual should be "hidden"

[Dinur-Nissim '03+Dwork, Dwork-Nissim '04, Blum-Dwork-McSherry-Nissim '05, Dwork-McSherry-Nissim-Smith '06]

 Requirement: Adversary should not be able to tell if any one person's data were changed arbitrarily

 Requirement: Adversary should not be able to tell if any one person's data were changed arbitrarily

 Requirement: Adversary should not be able to tell if any one person's data were changed arbitrarily

Simple approach: random noise

- Very little noise needed to hide each person as $n \rightarrow \infty$
- This is just for one query

DP for one query/release

 Requirement: for all D, D' differing on one row, and all q

Distribution of M(D,q) \approx_{ε} Distribution of M(D',q)

DP for one query/release

 Requirement: M is ε-DP if for all D, D' differing on one row, and all q
 ∀ sets T, Pr[M(D, q) ∈ T] ≤ e^ε · Pr[M(D', q) ∈ T]

19

The Laplace Mechanism [Dwork-McSherry-Nissim-Smith '06]

- Very little noise needed to hide each person as $n \rightarrow \infty$
- Theorem: The Laplace Mechanism is Differentially Private

Differential Privacy: Pros and Cons

- + Whatever an adversary learns about me, it could have learned from everyone else's data
- + Mechanism cannot leak "individual-specific" information
- + Above interpretations hold regardless of adversary's auxiliary information
- + Composes: k repetitions is ke differentially private
- No protection for information that is not localized to a few rows.
- No guarantee that subjects won't be "harmed" by results of analysis

Differential Privacy Deployed

mostly focused on count and average statistics

Challenges for DP in Practice

- Accuracy for "small data" (small n)
- Modeling and managing privacy loss over time
- Analysts are used to working with raw data, not querying (slightly) noisy data
- Matching guarantees with privacy law and regulation
- •

Part II

Setting

Property of Sanitizer

- Aggregate information computable
- Individual information protected

Differentially Private Algorithm Design

- Global Sensitivity Method: statistics
- Exponential Method: optimization

- Problem:
- Given function f, sensitive dataset D
 Find a differentially private approximation to f(D)
- Example: f(D) = mean of data points in D

The Global Sensitivity Method

Given: A function f, sensitive dataset D

Define: dist(D, D') = #records that D, D' differ by 1
Add or remove a record from D to get D'
Global Sensitivity of f:

$$S(f) = \max_{\substack{dist(D, D') = I}} |f(D) - f(D')|$$

The Laplace Mechanism

Global Sensitivity of f is $S(f) = \max_{\substack{dist(D, D') = I}} |f(D) - f(D')|$

Output f(D) + Z, where

$$Z \sim \frac{S(f)}{\epsilon} \text{Lap}(0, 1)$$

 ϵ -differentially private

Laplace distribution: $p(z|\mu, b) = \frac{1}{2b} \exp\left(-\frac{|z-\mu|}{b}\right)$

Example: Mean

f(D) = Mean(D), where each record is a scalar in [0,1]

Global Sensitivity of f = I/n

Laplace Mechanism:

Output
$$f(D) + Z$$
, where $Z \sim \frac{1}{n\epsilon} \text{Lap}(0,1)$

Exponential Mechanism

Problem:

Given function f(w, D), Sensitive Data D

Find differentially private approximation to

$$w^* = \operatorname*{argmax}_w f(w, D)$$

Example: f(w, D) = accuracy of classifier w on dataset D

Exponential Mechanism

Suppose for any w,

$$|f(w,D) - f(w,D')| \le S$$

when D and D' differ in I record. Sample w from:

 $p(w) \propto e^{\epsilon f(w,D)/2S}$

for ϵ -differential privacy.

Example: Parameter Tuning

- Given validation data D, k classifiers w_1 , ..., w_k (privately) find the classifier with highest accuracy on D
- Here, f(w, D) = classification accuracy of w on D For any w, any D and D' that differ by one record, $|f(w, D) - f(w, D')| \le \frac{1}{|D|}$

So, the exponential mechanism outputs w_i with prob: $\Pr(w_i) \propto e^{\epsilon |D| f(w_i, D)/2}$

Conclusion

- Differential privacy can help companies to learn more about a group of users without compromising the privacy of an individual within that group.
- Many of the world's governments now have strict policies about how tech companies collect and share user data.
 - Companies need users' data to provide high-quality services that benefit users, such as personalized recommendations.
 - Companies may face charges if they collect too much user data