
Lecture 7 : Public - key
Infrastructure

G. 5060

Fall 2021

Corrigan -Gibbs, Devadas,
Kalai

,
Zeldovioh

Play
* Recap : Digital Signatures

Logistics
* Signatures in practice

* Lab 1 theory & code
* Public - key infrastructure (PKI) due tomorrow 10pm ET

, ,,,,g, ,↳gµ,J[
- Common strategies
- Common pitfalls

Recap : Digital Signatures

Kyide_a: Message integrity w/o shared secret
↳ unlike MAC or

(Gen, Sign , Verify) password - based auth
↳ really revolutionary - no

sheet secret !
"

Gold standard
"

security tefñ

EUF-CMA-Ex.is/-ent:a1-nnforgeabil.-ty under
chosen Msg attack

↳"
Attacker can't forge signature on

any msg even after seeing
sigs om msgs of its choice

"

1) To define precisely use a game↳ Details matter! chat adv

→
←
→2) This is just one of many ←

possible security tefns for
signatures .
↳ random msg attack

,
on time

,
key leakage , - . -

↳ But
,

this is the most standard
,

most useful

Hash-baudsignatnres_
* We saw a tree - based construction
* Take

away
: hash fns /PRF are enough to

build secure digital Sig schemes
.

Signatures in practice (briefly)

- One of the most widely used crypto tools
* HTTPS
* software updates
* Encrypted messaging
* SSH
* VPN
* Essentially any protocol that sends msgs
one the Internet

- Two widely used protocols . . .
both nu

"

hash design
"

↳ Rsa Cg%Éj"ñwny)
↳ EC - DSA + friends (extremely popular)
/ both based on hard problems in number theory)

MsgPK size Sig size signs refs
←
""

similar to
what weSPHINCS + -128 326 80006 5 750 / saw itin 2010s shift b

Sigler opts
RSA - 2048 25GB 25GB 2,000 50,000

- 19705 Sk : "

43000 1¢
,
ooo }Wi&lyECDSA 256 32 b 646

used
572 -1 's

(Schnorr
,
Ed 25519)
- 1990s

SHAZSG Hash a 10,000,0001s
64 bytes

Choice of Sig schemes

- 99% of time
,

use ECDSA for modern variant)
- In rare cases

,

want to choose a diff scheme .

* Care about Sig length ?
↳
Shorter 132byte) sigs using fancier crypto

/pairings)

* Want short signatures + simple implementation
+ have some design flexibility

↳ stateful hash - based signatures
Cursed for ware updates

* Need PQ security ? RSA
,
ECDSA are not

.
!

↳ No known quantum
.

attacks on
the

hash - based Sig scheme we saw

↳
Other PQ schemes based on fancier crypto /

lattices)
↳6.875,6876

NIST is in the middle of developing new[PQ crypto algs . NSA stated goal to transition

only PQ-safe alg] at some point . . -

key Take -aways

1. In practice , usually use ECDSA
.

2. Mental model : pub key = 32 bytes

Sig
= 64 bytes

Public-key infrastructure
.

(PKI)
Last summer

.
. .

t.IM
⑦

% 0
0

> th a
Dean me

The right image . .
-

Mom
÷

Msg

0

ta
me

VK Dean
Ver/vk.pem.my ,%em)?1

How do I know it was dean who sent
me this email ?

Now that we have signatures , answer is clear ?
(add VhDem)

But where do we get Nepean ?

Option: Use public key as name
.

Dean's
"

name
"

is the vk
.

Instead of calling him
"Dan !

Call him 0x2EEc9DB3
.
.

-0668

↳É
- Can imagine

that at birth
, we're each given

an Csk
, v14

-

pair . Everyone calls us by vk .

This sort- of works ! Used in Bitcoin & friends ,
also for hidden services

,
i . .

P#: Cumbersome
.

Hard to remember 32b names
.

↳ PKI

Pcm : What happens if you
lose your

secret key ? Or if it gets stolen ?
↳ Revocation

PKI is all about mapping . . .

human - intelligible
to public keys .

names

email addr

domain name

legal entity
phone A-
Kerberos ID

can think of PKI as having the
API (grossly simplified)

Iskeyforlvk , < name >)→ { 0,13

* Many many ways to implement a PKI .

a-
.
we will see some .

* But all serve this sane purpose .

* No
"

perfect
"

solution here - lots of trade-offs .

We will look at a few common schemes
. . .

Trust on first use (TOFU)
→ Accept only first key you see for a name

.

Client keeps a cache = {3-
dictionary/
Meek table

Iskeyfor / vk.name) :
if name not a cache :

cache [name]=vk
return true

else :
return rk== cache [name]

SSH uses TOFU
(Could use this in my

email example . Protection if
have already gotten end from Dean)

&→ In

ios : - Simple ¥ ¥
-

Easy to understand
-Surprisingly effective - protects you against
an attacker that hijacks 2nd connection .

Cony : - No protection on first communication
- what happens when key changes?
↳ SSH : Warn

. . -
then what?

Trust on first use (TOFU)
→ Accept only first key you see for a name

.

①0 pÑDean
, Mss ,
T

> f-*
n

{ (dean@ mit.edu , phpean))
check pÑ☐eaEpkDean

Verify 0 on msg - -
-

Certificate - Based system
CCAD

→ Let certification authorities manage
have→ key mapping

client keeps a list of known CAs
'

verif keys .
CAS = { vkverisign , Vhoposh , - - - }

⇒ Client accepts (vk.name) pair if known CA signed it.
↳ CAs

"

attest
"

to name → vk mappings.

Iskeyforllvk,r) , name) :

For each VKCA in CAs :

if Verify /vk.ws
,
(vk.name)

,
of

return true

return false

when a client generates a new keypair,
it must get a CA to sign its vk

Certificate - Based system
CCAD

→ Let certification authorities manage
have→ key mapping

0 0
PkDean,Jm±T Jk &Msg
, Isg

{ pkmit , - - - l

Ver.fi/pkmit,(phoean,deaamit.edn),rmit)-?1
Verify Bean on msg . - -

To get a art
,

need to talk to CA
. . .

Certificate Issuance

Csk,vk) ← Gena CA (ska)
lvk
,
me@ mit.edu) ,$$$.

°

①& €. .tk#t-hatI-en.-.ne...em-:t=ed...s

<
T TeSignfshca.vlgme@mit.edu))

Common extension : Accept a fuk
,
name) pair if its

signed by someone whose key
was signed by a known CA

Lots of extra metadata in art : Expiration date
,
- .
-

Used on web (HTTPS/TLS)
,
code signing , SIMIME , -- - - --

-
also at MIT

¥ :
- Client only needs a few vks - scales well !
- Client can choose which CAs to trust
- No online interaction w/ CA

coins : - Weakest link security - attacker who compromises
one CA can impersonate anyone

!

- Validation is typically pretty weak
. - - Tofu almost

- stolen key ?

There are many variants on certificate - style

systems - key directory , web of trust
,

. . -

"

key
"

idea : To prove (vk.name) binding ,

I

can give you signature on

(vk.name) from someone you trust.

In practice, where does list of known CAs
come from ?

→ Usually packaged 4 browser or 05

↳ Includes all sorts of sketchy - looking CAs
("AAA Certificate Services; govt , etc

.)

→ Many potential points of failure - stealing
any CA Sk is enough to impersonate any website

2011 : - Digistar signing key stolen
- Attacker used it to issue art for google.com_↳°bdMP+Gma"t"$""- Browsers pull Diginotw from list of known CA]
- Dutch gait websites break

↳
(If attacker targeted lower profile domain , would
probably not have been discovered so quickly)

How to detect
"

rogue
"

CA?

- Have client software look for certain misbehavior

e. g.
Chrome his list of Google irks hadooded
If CA issues a rogue Google art,
Chrome will (I believe] notify Google↳ Doesn't really solve the problem .

Only works for friends of Google
↳If client knew what the right art was

,

wouldn't need PKI
.

certifiatelranspam-y.com browsers
,
sort of)

- Require CAs to publish all cuts they
sign in a public log . - . many logs run

by many different orgs

- mit.edu can inspect logs regularly to
make sure that no CA has issued

rogue arts for its domains

- In theory
,

when browse gets a art

from a web server
,
it can

"audit
"

the art by checking that it
appears

in

the log .

- Lots of messy implementation details
↳ prevent logs from cheating
↳ ensure that everyone sees same log
↳ ensure the client can audit recently issued carts
↳
privacy issues w/ auditing
:

I

Revocation
- Aster a CA has issued a art

,

they may want to revoke it→ make sure clients
reject it in the
future .

Why ?
* site owner has their secret key stolen (Heartbeat) - 2h
* site owner realizes they generated key
using bad randomness (Debian bug) - 2008

* MIT student graduates, account inactivated

Once a CA has signed a art and

given
it out

,
CA can't

"

unsign
" it

.

Appiah : Expiration
* Cert has expiration date

,
clients will

reject out after that date

* If expiration date is not far away,
this handles many routine revocation caus

e.g . MIT certs expire June 30 every year .

Approach : Software vendor Ces
.
Mozilla)

ships update to client w/ full
list of revoked cents

.

- window of vulnerability .
- as long as

update latency
- b/w storage cost after wave of
revocations

"

CRLSET
" "

CRL.be
"

Approaches : fallen out of favor
III

- Certificate revocation list CCRL)

↳ ask CA for list of all revoked unexpired arts
-

expñ_e after a wave of revocations
- what happens if can't reach CA serves ?

OCEP
↳ Ask CA each time you use art
-

privacy issues
↳ "

stapling
"
= short - lived certificate .

Bottom line :

PKI is about hares ⇒ public keys
key idea : Certificates signed attestation of

name ⇒ vk binding

key challenge : Revocation stolen key
,

invalid binding

