
Lecture 12 :

Encryption in Practice

G. 5060 - fall 2021

MIT

C-9
,
Devadas

,
Kalai

,

Zeldovioh

Plan

* file encryption
* Encrypted streams : TLS

Logistics
* Encrypted messaging -Lab3dne10/Theme : Gap between properties - Midterm 11/2
that

apps want & properties
that standard schemes provide .

Recap : Encryption

* Weak CCPA - secure) enc
,
fixed - ten msgs,

shared key

(counter mode
b-

* " "

var - ten msgs
"

Lene-then-MAC
Dh

* Strong (CCA - secure) enc
,

" "

[DH key Exchange

*
" " "

"

without a

↳ shared key

Today : Applications

Next time : Privacy /Crypto problems that

encryption doesn't solve
.

Surprise?
→ With CRHF ,

,
MACS

, Signatures
AE
,
DH
,

PRE

you
have the tools to understand essentially

every widely used cryptographic protocol?
(exception , NSA

,

lattices
,
blockchain

,
-)

→There really are not that
many primitives

in use in our systems .

BUT: As you'll see
,
the designs/specs are

still very complicated .

Why ?
↳ Extra security & functionality properties
↳ Less often

,
but sometimes Sloppy design

↳ Also
, you'll see rubs violated → often attacks

File Encryption
↳ Essentially what we've already seen .

↳ Bottom line : Use authenticated encryption AES - GCM

Example: WhatsApp Encrypted Backup
lmsgs

,
contact

,
:-)

- Phone picks a secret AES key k

-

d- = AES - GCMCK,€)
↳

sent to WhatsApp
- User saves key k (64 dee digits)

fthereé a more complicated option that]encrypts using a password uses

Hardware security device
. .
- more complicated .

Example : Tahoe - LAFS
Store file on remote server

,
indexed by

hash of file .

! d- = AES -CTRCK, file)

☐*
key K

h= Hash (a) Why hash ? Server

can check if at
i

got corrupted 40
j

client's help .

O
h

s

& <
Ct

.

they h, hash h

h ?= Hashcct)
file-_ AES - RTR -Deck

,
Ct)

Non - examples
:
- Google Drive - no end-to-end eric

by default - Google can
see you

data
.

- Dropbox - can't use strong ene

b/c of deduplication.

Even file encryption can be tricky . . .
(see pdf - insecurity .org)

Example : PDF v1.5

* PDF format allows password - encrypting some/all

pages of doc - uses Hashlpassud) as AES key .

* PDF supports submitting form to external server via HTTP

* PDF forms can reference objects in doc

* PDF supports submit form on event Copen, click, close)
→ Each seems fine on its own but together
they allow an attacker to learn encrypted data .

e s②
Submit to evil .com

>Title
Evil

Page
sent over Page r ①

On decrypt,
add plaintext to
form element.÷÷¥⇐÷¥%
.

Moral ?
* As soon as you depart from the

standard simple thing , you open
the

door to all sorts of subtle attacks
. . .

* Anking control info /metadata is as important as

auth' ing the data itself .

What would have prevented this attack ?
- MAC over entire PDF ?
-

compatible w/ wanting to be able to load
one page

at a time ?

TransportStream Encryption : TLS { LayerSecurity
(Formerly SSL)

Vision :

CLIENT
"

Encrypted & authenticated SERVER

pipe
"

0
< 1911%1*1111 > ☐*

N' ACTIVE ATTACKER

* Uses certificate - based pub key infrastructure to

map domain name knit- edu) → sigverif public key.

* Seems simple ! Very hard to get right . . .
Many attacks & patches since first versions .

MORAL : Use TLS 1.3 - don't try it yourself .

Why is this hard ?

- Version /protocol negotiation - client and server

may support distant algs, protocols
↳ Downgrade attacks

- More complex protocol→ more complex security goals.

- FEATURES? Everyone wants to add something
extra G.g. client certificate auth at MID

Structure of TLS (v1.3)

I. Handshake (key exchange)

client mit.edu

0 →
*
-

t ¥
secret Hey K

II. Record protocol
k

To
* ←

app data →
,

TLS Handshake : Properties {there
a- eight

in the RFC !

* Correctness

* Security - adv
"

learns nothing
"

about
session key → we saw this before

* Peer authentication - each party believe they're talking
to the other

* Downgrade protection
-

parameters chosen should
be the same if no attacker

* Forward secrecy writ
. Key compromise

↳If attacker compromises client-server, it cannot

decrypt past traffic .

* Protection us
. Key compromise impersonation

* Protection of endpoint identities

*Grossly simplified!TLS Handshake
(certain#-)

Client lpkca) mit.edu/skmIt)
¥ Client Hello

☐ s←[i
, ,n]

re ← {1, - in]
-random values

- ciphers supported , Rig
"

c- IG
(think : diff primes
for DH key ex C)

>
Server Hello Choose cipher
- random values suite to use .
-

cipher to use
, Rs = grs C- IG

exchange .

""" "

µ
?
" "

Server certificate for mit.edu

/÷÷
.

with key
check Sig

' derived fromÉÉÉÉ § """ "" "" ""has seen so far . using skms-ik-Hgr.rs)
↳ km . . ↳ Kma↳ MAC over transcript seen so ↳
↳ far using key kmac

Send application data using

<
Keys derived from k*

-

- Why replay attack isn't possible .

↳ random values change every protocol
run

- Why send server art only after establishing
shared ☐ It secret ?

↳ Hites art from passive
network attacker

(doesn't necessarily learn which Akamai -
hosted sike you're visiting)

- Why does this provide forward secreuy
?

↳
Only use long-term secrets to sign

↳ Delete the DH secret keys after
handshake completes .

(N - B
.

This doesn't protect past traffic]
against eavesdropper ul bis quantum comp.

key - Compromise Impersonation Attack

At MIT we use client certificates .

A bad way
to do a handshake is this :

Skalica gskflice skint
0 >

☐
g

GSKMIT

I t

µ, µ(gsHiaskmÑ) k=H(- - -)

Problem : If attacker compromises Alice's
secret key , attacker can pretend
to be MIT to Alice

.

- with sleaze
,

attacker can already
make problems.

- But by impersonating MIT, attacker
can trick Alice into sending more data .

lpasswd, etc.

Properties that TLS doesn't provide

AuthenticatedEof_
- TLS makes data available to

app as it arrives
- Needed for many uses (Youtube

,
etc)

- But counterintuitive consequences
:

curl https://sh.rnstnp.rs/sh
↳
rm - rf Hmp / install . - -

8¥ cut! i.
what is the right
thing to do here?

Hidirglengthofplaintexts (
"

CRIME
"

)

Reasonable thing to do : gzip data before sending
it to TLS (used to be standard) .

Problem : Attacker controlled data often sent in

same stream as secrets . Esp in web

GET /a HTTP/ 1-1 } 123 bytesCookie :<secret> BRA
GET Ib HTTP/1-1 } 122 bytes •

Cookie : Cesecret)

↳ Compression now depreciated in TLS.

Maraj: Use TLS 1.3 whenever
you

need
"

encrypted TLS
"

Be aware of its pitfalls .

Encrypted Messaging
Think : Signal , WhatsApp , iMessage , - . . .

Server

±
>

☐

Why dissent from stream setting ?
*

"

connections
"

are long lived - for years
* Little data

,
few connections

* non - interactive - either party can be offline
for long periods

Goals : Many as in TLS (though underspecified
e.g. Forward Secrecy
"

Post - Compromise Security
"

- If attacker gets
a snapshot of your device,

v11 eventually
not be able to read msg.

[Not dear how relates to real-world
threat

Unlike TLS
,
these

apps typically rely
on a centralized key server

.

↳
to map phone # ⇒ public key

If someone compromises the key server
,

very weak protection against active attack
.

* Phone can show

☐ you
hair of claimed

Pk Bob . - .

check mawnlly .
s
" "

No one
"

does this(,µ * App can give warning
when pkisob changes
↳Everyone ignores this

[
for Sec - conscious users

,

maybe these suffice?

Toy key Exchange

÷:÷¥÷;]
"

Group Cgs, Order n

b ← 11
,
-
-yn
}

0 t.tg.Y.IE"
&

<
gb ta k=µ(ga

' b)

N.B. Server learns who is talking
to whom

.

Toy Ratchet - How to get forward secrecy
and post - compromise security .

proxied via
Alice (k) Boblk)server

""" " ""

|
" """"

° .b ,

11
, . .
.nl

92£31
, .
. - in} <

9th
,
(ki

,
Msg)

k
,
-- Hash /k , gabywww.si.c.cn.mss.is/b.*.....n ,£12b)

delete a
,

kgltashfke.gl
"
)

bz

<
9
,
Elks

, Msg)
delete b

,

-

- An attacker who compromises device cannot
recover past msgs

- Without persistent compromise , protocol will
"

heal
"

security

* Big advances in encrypted amms

in
' last -10 yrs
↳
Before that : not much TLS

,

not much enc msgivy

* Next time : Open problems . . -
what we havent solved .

The

End !

