
Lecture 18 - iOS

security

C-G
,
Devadas
,
Kalai
,

2-eldovioh
Fall 2021 -MIT

Nov 9
,
2021

Play
* App / platform sea ideas

* Secure Boot Logistics
* PIN - based encryption - Lab 4 code & theory

↳ Secure enclave due 11/18
↳ File encryption - Drop date 11/18.µµngnm?[

Today : Capstone lecture for platform security

module .

We will look at the design of iPhone/iOS

platform

Goal : Understand how concepts we have seen

in this module / isolation
,

software sourcing
,

secure boot) show up in a deployed
system .

To kick off the discussion
,

let's think about

some of the security threats that Apple might
consider when designing an

iPhone
.

SOFTWARE
- Malware app

* steals your
contacts

* eavesdrops on your
calls

* steals your
credit card data

PLATFORM

-
Non - Apple OS gets loaded on your

phone
*Maybe to run non - Apple software

* Maybe is malware

* Maybe to
avoid paying Apple 30% rev share

HARDWARE
- Malicious chips installed in factory
- Malicious chips installed en route to store

- People selling fake iPhones as real ones

- Someone steals you phone
* gets secret data

* authorizes
txns on your behalf

- Non -Apple -authorized peripheral

[TRANSPORT- (won't cover but also important;)
Phone call eavsdrppiy,

etc .]

When you
are learning about security

defenses
, good to remember :

* Some defenses are primarily there to

protect AUV vendor's business interests
.

e.g. DRM
?

* Some defenses are primarily there to protect

the user's interests (and indirectly Apple's)

e. g. Encryption at rest ?

* Sometimes , these interests
are aligned .

* Sometimes , case is less dear . leg . App store ?

Trusted boot?)

App Security
- Most secure computer /phone is one that doesn't

have any
data /

apps
on

it & sits powered off .

↳ Not an option .
-Need to download & run software written by
random people on the Internet . → Malware risk ?

A pound
& "

•← Download ✗86 binaryios app
more - & run on Linux

ggg
?Ñ •
/ machine

g¥
Visit random webpage

••f
W/ JS enabled

less
-

p]
0pm

Openness

- I get on a standard iPhone
, app

has to get

through review by Apple .

↳ some limited cheeks for malware

↳ Also cheeks for biz reasons
. . . in-app payments.

* (can't have app offering loan for Apr > 36% with

repayment required c- Go days , . . .)

* Epic suit

iOS App security

- Once app
is on

the phone , it runs in an

isolated sandbox

* No shared files
* Only communication via limited APIs (photos)

- App developer can request access to extra APIs

when submitting to app
store

* Control VPN config
* Query user's location on push notification

* Get health data

:

↳
Apple can try to limit API access to min necessary

when
app

admitted to app
store

.

- Arguably these protections make it more difficult

to get malware onto app store
.

Still
,
what can go wrong

?
t

At start of semester
, Nikolai mentioned Xcodeghost

↳ Malicious version of Xcode der tools posted on

pub mirror in China

(faster to download than true version in V.5.)

When developers compiled with malicious Xcode
, app did

???

↳
App store review didn't catch this

(though made it easier to clean up]

If isolation is so good , why care?

- Can get VVIP of device
,
lang
,
country

- RN clipboard (password manager, cc
#
,
. .
.)

↳ could be very bad

- Can open
URL - try to phish user (7)

Can also steal use data more directly

- Fake Tov
,
- -
-

5¥ Still , isolation buys a
lot

.

iOS secure Boot

- Goal : Make sure that Apple - signed 05 kernel is

running .

↳ Protects against persistent
mlwane

, people from installing

custom/open 05
on phone, someone from tampering w/ 05

aint be updated →
.

☐BootRm→
Lou- level

pkpp① Bootloader kernel
XNV

-Bostrom cheeks Sig on LLB
,
runs

-LLB checks Sig on kernel
,
runs

→ Failure = recovery mode.

- Very similar to what Nikolai described w/ PS3

People
"

jailbreak
" their iPhones . . .

How ?

- Bugs in Bostrom and LLB could allow booting

non - Apple 05

- e.g.
Check rain

↳ Bostrom (burned into HW) code provides support

for loading code via USB ("DFU mode
")

e.g.
if you really mess up

056 LLB code

and can't boot

↳ Problem : Writing USB drivers is not so easy,

iPhones w/ Aa chip have a
UAF in Bostrom

↳ Via USB
,

can trick phone into executing

arbitrary 0s w/o verifying signature.

CAN'T UPDATE Bostrom - Can't fix?

But,
doesn't persist across restarts

.

→ Clever patch on more recent iPhones
.
.
. maybe

nun time to discuss later
.

↳ Patch later subverted .

Protecting data aster phone theft

settings :
- Phone grabbed in choked luggage
- left in restaurant

- Taken by friend/partner

Goal : Attacker should
"

learn nothing
" about

data on phone ?

↳ Contents of files hidden

↳ Probably lots of metadata leaked

1¥ files on disk
,
etc

.) - not sure

iOS Protection for Data at Rest

Threat : Someone takes
your phone & wants to

get the data off of it.

Basic idea : Encrypt all data w/ 128- bit AES key .

* special hw AES engine for this .

* App processor never sees AES key
, NVRAM

↳ dañt easily leak to n

OS or apps . . .

÷.

↳Even if you compromise
05
, cañt get raw keys . AES

↳ 05 cañt accidentally leakbey . App engine
,

i

ifeng.IE
see

enclave

☒
n

secure
NYRAM KM

But, Where
do we store AES key ?

(Cait use 4-/ G- digit PIW as key . .
.to-

short !)
Gait store key in normal flash)

1

Idea : Have special
"

secure enclave
" that holds

key - decrypts it only if use, enters

correct PIN
.

↳
Surprisingly challenging to do safely

- Secure enclave is its own processor,

also uses secureBoot

+ Uses measured boot (as in Srini 's lecture) to

derive secret encryption key that depends on

OS being run - can't tamper w/ endure 05 &

get data

- Secure enclave generates long-term secret VID on

first boot & stores w/ fuses

↳ uses VID to encrypt files

- Enclave communicates w/ secure storage over enc

channel (they have shared secret)

- Secure storage holds : - en key for use data
- hashed passwd Crashed w/ VID)
- counter

PIN Auth w/ Sec enclave

1. User enters PIN
.

2.
iOS

passes PIN to enclave

3
.

Enclave enforces timeout

4
.

Enclave passes
hashed PIN to see storage

5. Sec storage checks PIN

↳ If correct : Return AES key, Cho guss ctr

↳ Else : Increment guess
ctr

↳ IS too many guesses , erase keys
[special hw support
for erasure

"

effaceable
6 .

Enclave passes AES Ky to DES engine storage
"

(bypassing app processor)

7. App processor sends data to AES engine to

be decrypted

Defeats many attacks :

- Brute force ✗

- Replace secure endure w/ backdoored one ✗

- Guess PIN & reboot X

→ Similar strategy to ensure erasure of other

important pieces of data (cc#,FaaID
,

. . .)
Remote wipe of
device

what about TouchID /Face ID ?

↳ Always need PIN on
reboot .

↳ otherwise
,

keys stored in enclave .

- To make it harder to swap
out Touch ID

sensor while devices is running (& feed in recorded

fingerprint
,

enclave & ID sensor share a secret.

→ For main security
,

you'd power down device

→ Secure enclave + secure storage make PIN -

based encryption much harder to break .

with checkrein attack
, user can exploit

bug in
app processor CPU to install any

OS

on app processor.

Recall : Apple can't Patch Bostrom on device

clever idea
: On never phones 11-10+1

,

secure

enclave detects when phone has booted in DFU

made love VSB) and panics in attempt to access

user data

↳ Even if you
can't patch app prog can

patch enclave !

↳
On Alo

,

there's a bug in enclave too that

allows reading enclave memory .

Where could bugs remain ?

- Kernel on

app processor
is big? BUGS

!

- Even though it doesn't see Ats keys, it

sees lots of sensitive info CCC#
,
PIN
, passed)

↳ many exploits
- Boot code on

both processors may have bugs

- Could extract secrets
'

using hlw attacks -

probes , power analysis,
etc

. $$$

- Could steal secrets via
"

site - channel attacks
"

↳ Having separate
AES engine likely nukes

stealing AES keys difficult

↳ still could steal secrets on device .

÷

- So far
,

we have discussed how to
go

from PIN → AES key .

- Substantial extra complexity .

* Main file - system key (kept
in e# cable stage)

↳
☒

"

class key
" for type of protection

c.
* Each file encrypted

with own key

-Different levels of protection (
"
class")

- No RIW when looked Ckeys on took

- Append when looked Csk wiped on look
,

but

pk left around)

↳ Useful for writing msg
to user when

phone looked
→ Default for app tats

- RIW when booted

- No protection (but still encrypted to allow

remote wiped

Reg :

- Sophisticated & expensive defenses to

protect against seemingly esoteric threats .

- Isolation and crypto combined at many

layers
↳ One not so good w/o the

other .

- Raises bar for attack
.

