Today: Privacy with Leakage

Recall: We had a module on platform security, where we showed how +to

completely hide a message usivg encryption.

Today: What if we want to hide the message but at the same time
leak some specific information, for the sake of utility?

Things become much more complicated...

Preview to advavced topics in cryptography (some which are covered in ¢.575)

Examples:

1. Encrypted email

Suppose we want to hide the content of the emails that we recieve.
why would we want +o hide this data?

1. Data gets stolen.
2. Data gets misused or abused.

2. Data gets mispurposed in ways that we don't expect.

Lets hide our emails usivg a public-key encryption schemel

Tf we use a secret key scheme we will need +o preshare a secret key with everyove

who sewnds us an email...

Hidiwg the content of our emails comes at a big price!

EX. We cannot use spam filters!

Goal: Encrypt our emails but leak only whether i+ is a spam or wot.

The spam filter is a function F that takes as input a message M and outputs D or 1,

corresponding to spam or vot spam.

Tdea: Use a special encryption scheme that given sk and F,
allows to geverate a special secret-key sk(F) such that:

Given Evc(sk,M), sk(F), one can efficiently compute F(m), but learn nothing

more about WMl

This is called a functional encryption scheme.

Constructing a functional encryption scheme is quite difficult!

Knoww constructions are highly inefficient.

Constructing a functional evcryption scheme that allows +to leak a *siwgle* functioval key sk(F)
has beewn constructed in 2012 from LWE (Learning with Error), which is a stavdard

cryptographic assumption

Constructing a functional encryption scheme that allows to leak many functional secret keys

seems to be sigmnificantly more challanging and is equivalent to indistinguishable obfuscatiow.

2. Obfuscation: The goal is to publish a program that leaks nothing except the

wmput/ontput behavior of the program.

This is one of the most importawt goals in cryptography +oday!

Ovie cav use probgraph obfuscation to construct almost any cryptographic primitive

we can think of, and more!

Example: Software updates.

Suppose a software company found a bug in their software and wants to post an update,

but does not wish +o reveal the bug!

Unfortumately, constructing (and even defining) the notion of obfuscatiow is very tricky!

There has beew a recent breakthrough showivg how +o obtain "indistinguishability obfuscation”.

This is extremely useful for cryptography!ll
Unfortunately, is extremely inefficient.

Both functional encryption and obfuscation seem far from practical.

There are a few examples of privacy with leakage that seem +o be easier,

and are nsed in practice.

3. Zero-kwowledge proofs:

Suppose I want +o prove to you the validity of a statement

without revealing any information for why the statemevt is true?

This is called a zero-knowledge proof (ZKP),

and is one of the magjical concepts of cryptography, invented in the mid &0s.

The reasov it is so magical is that at first sight, it is clearly impossiblel
The reasow is that a proof is information!

For example, T can use i+ to convince others that the statement is true.

As we said throughout this course,

cryptography is the art of making the impossible possible!

Zero-knowledge is made possible by chavging the classical model of a proof,

to allow the proofs to be interactive and randomized!

It is remarkable that even though proofs were arouvd for thousands of years,

they were studied by ancient greeks, starting from Euclid, and were developed into an active
area in mathematics, called proof theory, throughout these years, proofs always consisted of a
of a single document, that could be deemed to be either "valid" or "nvalid".

This chavged with the introduction of zero-knowledge proofs!

TIuteractive Proofs:

Av interactive proof is awn interactive and probabilistic protocol between a prover and av efficient verifier.
If the statement is true, thew an honest prover caw convince the verifier to accept with probability 1.

Tf the statement is false, any malicions prover can convince the verifier to accept only with small probability.

"Theorem": Awny proof can be converted into a zero-kvowledge interactive proof.

Zero-knowledge proofs are used in practice.

They are used for authentication: A user proves that he "kvows” a secret key using a ZK proof.

They are used on the block-chain to shield the transactions, which are known +o reveal private informatiow.

4. Secure wmulti-party computation (MPC)

Allows a set of entities to jointly do a computation ovn their seusitive data, and learw only the output,

without revealing anything more about their sensitive data.

Again, the goal here is +o hide the seusitive data, but at the same time to learn the output.

Example: This can allow hospitals to do joint computations on their sensitive patient data.

Next class, we will talk about what to do if the output you want to learn contains sensitive information.

Starting from the mid 0's we know how +o compute any multi-party function securely.
This uses very interesting tools (which we did not discuss v class), such as secret sharivg,

oblivious trawsfer, commitments, and alse Z¥ proofs.

